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Abstract

Surface reconstruction has been studied thoroughly but very little work has been done to address

its evaluation. In this paper, we propose new visibility-based metrics to assess the completeness

and the accuracy of 3-dimensional meshes based on a point cloud of higher accuracy than the

one the reconstruction has been computed from. We use the position from which each high-

quality point has been acquired to compute the corresponding ray of free space. Based on the

intersections between each ray and the reconstructed surface, our metrics allow to evaluate both

the global coherency of the reconstruction and the accuracy at close range. We validate this

evaluation protocol by surveying several open-source algorithms as well as a piece of licensed

software on three datasets. The results confirm the relevance of assessing local and global

accuracy separately since algorithms sometimes fail at guaranteeing both simultaneously. In

addition, algorithms making use of sensor positions perform better than the ones only relying on

points and normals, indicating a potentially significant added value of this piece of information.

Our implementation is available at GitHub/SurfaceReconEval.
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1. Introduction

Surface reconstruction is the task of producing a continuous digital representation of a real

surface of which discrete information has been acquired. This information may come straight

from point clouds produced by a laser scanner. This includes Time-of-Flight [1] and Structured-

light [2] devices as well as terrestrial and airborne LiDAR [3] that allow scanning large environ-

ments. Point clouds can also be produced from images using Multi-view stereo [4] or Structure

from motion [5].

This task has been extensively studied and a tremendous amount of approaches have been

proposed. In Section 2, we provide a state of the art of these methods. However, very few pa-

pers address the evaluation of such a task. In real-case scenarios when the goal is to produce a

digital model of a real object or scene, there is no ground truth other than the real surface itself.

It is thus impossible to directly compute the “distance” or the “difference” between a digital
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model and the ideal real surface. The only possible work-around is using synthetic data as in [6]

where a realistic surface is chosen to be the ground truth and is then virtually scanned in a

way that simulates the defects of a real acquisition, and the surface reconstruction algorithms

to be evaluated are run on this virtual scan. This makes it more straightforward to compute

metrics that assess the difference between the ground truth model and the reconstructed ones.

Another possibility for working with data from real scenes is to sample points from a recon-

structed mesh, but this introduces a large bias as methods producing the same features will be

unfairly favoured. Our work tackles the real-world case where we do not have access to such a

synthetic ground truth. We call “real data” the data acquired in the physical world with real

sensors. This includes LiDAR scans, images, RGB-D images, etc. As is usually done to address

this issue, we assess the reconstruction of real scenes from real data only based on other real

data of significantly higher quality. Even though this idea is quite typical, the main contribu-

tion of our paper lies in the way that we assess the difference between the reconstructed surface

and the high-quality real data as inconsistencies, inspired by recent work on change detection [7].

The fundamental interest of this work is to propose metrics to assess the quality of recon-

structions from low-quality real data based on high-quality data. Although it is possible to assess

the quality of models visually, this raises several issues. First, it is a subjective comparison,

one might be tempted to favor their own or preferred method over others. Secondly, everyone

has a different perception of visual quality and we might not agree even without conflict of

interest. Thirdly, while it might sound reasonable to visually evaluate a few different models

of a relatively small scene, it is very unlikely that one would be able to carry out a large-scale

evaluation involving dozens of models representing large areas. Consequently, we believe it is

essential to find relevant metrics to assess surface reconstruction and, in our opinion, current

metrics are not entirely satisfying. As pointed out by [8], there is a lack of ground truth and of

benchmarks in the field of urban reconstruction. Our paper aims to tackle this problem. This

endeavor is hard because of several aspects.

Limits in the quality of the ground truth: the specificity of working with real data is

the presence of noise in what we consider as the ground truth. In addition, real data is always

sparse and incomplete, which means that we do not know the state of space (occupied by the

object or empty) everywhere. This raises the question of how to assess pieces of reconstructed
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surface in unseen, unobserved regions.

Our contributions are twofold:

1. We propose a setting where the high-quality data used to compute metrics is significantly

better than the low-quality data on which surface reconstruction is performed in three

separate ways:

• Coverage: we use multiple data sources acquired from multiple points of view to

ensure that the high-quality data has a significantly better coverage of the surface to

reconstruct than the low-quality data.

• Density: we ensure that the density of the points in the high-quality data is signifi-

cantly better than that of the low-quality data.

• Noise: we ensure that the noise level is lower in the high-quality data than in the

low-quality data.

2. We propose metrics that penalize inconsistencies between the surface to be evaluated and

the high-quality data: a piece of surface reconstructed within a volume unseen by the

high-quality data will simply not be evaluated as we have no information on it. This does

not mean that we do not evaluate the hole-filling capacity of the evaluated methods. As

the high-quality data has more coverage, we evaluate hole filling exactly where we have

the data to do so.

Assumptions and priors: algorithms make different assumptions about the type of shape

that needs to be reconstructed and this leads to very different properties. Consequently, de-

pending on the metrics’ definitions, these assumptions can dramatically influence the assessment

and sometimes in an unjustified manner. An example of such a situation is shown in Figure 1

where the left model would be attributed a bad mark because of the red piece of surface even

though the rest of the model is correct. Does this red piece of surface need to be taken into

account when assessing the model? We tackle this issue in two complementary ways: first we

use a softer definition of watertightness adapted to the reconstruction of open scenes (see be-

low), and second we define metrics that only assess hole filling where relevant high-quality data

is available.

A surface is watertight if it has no border. In the case of a triangle mesh, this means each edge

needs to have exactly two incident faces. We will call this property hard watertightness. When
4
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trying to reconstruct an open scene, for example, it is often more realistic to authorize the

reconstructed surface to intersect the boundary of the domain (a bounding box, for instance) as

illustrated in Figure 1. We thus define soft watertightness as the property that a mesh has when

it has no border except on the boundary of the domain. Only triangle edges lying on the domain

boundary can have only one incident face. In practice, we only ask for the evaluated methods

to be softly watertight, which means that they do not need to randomly fill the very large hole

at the boundary of the domain when reconstructing open scenes. In fact, most reconstruction

methods have this ability: Poisson reconstruction [9] using the Neumann boundary condition

(opposite to Dirichlet) allows the reconstructed surface to be open at the domain boundary. For

Delaunay-based methods, we can simply add eight points to the input point cloud to correspond

to the corners of a bounding box, and remove all triangles belonging to this bounding box at

surface extraction time (or in post-processing).

Our proposed metrics are based on the visibility information contained in the high-quality

data. We assess the reconstructed surface only where the real one has been observed. For that

purpose, we make an extensive use of sensor positions (positions from which points have been

acquired). This information is easy to access and it provides us with a full ray along which we

know that space is free, instead of just a single position where we know that the real surface

lies. We used these newly-defined metrics to assess several open-source surface reconstruction

algorithms and a licensed one on different types of scenes. Even though our protocol is intended

for real data, one of the datasets that we used is synthetic. This allows to test the algorithms

on the same kind of scene they have been trained or tuned with. Having better control on the

data also prevents any experimental-related failures of the algorithms. In Section 2, we review

surface reconstruction and present the algorithms that are evaluated in the present paper. In

Section 3, we define our metrics and discuss their nature. In Section 4, we present the three

datasets on which we tested our evaluation protocol and present the experimental setup we

used to generate the high-quality data. Results are detailed and analyzed in Section 5, before

we present the conclusions of our work in Section 6.

5



/ 00 (2024) 1–37 6

Figure 1: 2D Comparison between hard watertightness (left) and soft watertightness (right). The soft-watertight
surface has a border (materialized by the blue dots) but only on the boundary of the domain. When trying to
model urban environments, the red piece of surface from the hard-watertight surface does not have any significant
meaning. This illustrates why soft-watertightness is better suited to open scenes.

2. Related Work

2.1. Surface Reconstruction

Here we review some existing methods to reconstruct a triangle mesh from point cloud and

classify them by the paradigm they use. See [10] and [11] for an even deeper analysis of them

(even though the most recent methods do not appear). Methods evaluated in Section 5 are

typesetted in bold.

2.1.1. Indicator function

Often used to achieve watertight reconstructions, this class of algorithms proceed by com-

puting a space segmentation. The object itself is defined as the region of space where the

labeling equals a certain value. The surface is then computed by finding the changes in the

segmentation. Popular approaches in this field are [12], Poisson reconstruction [13], and the

differentiable Poisson solver that has been introduced in [14].

Recently, lots of learning-based methods have been proposed. While they often outperform

non-learning-based ones on simple geometries, especially closed objects, they have not been

proved as able to deal with the complexity of large and open scenes. IM-NET [15] is a learning

framework which predicts whether any point (x, y, z) is inside or outside the given shape needing

to be reconstructed. Occupancy Networks [16] presents a similar way of computing the so-

called occupancy function of the 3D object. Convolutional Occupancy Networks [17] introduced

a learning-based framework to compute implicit surfaces. Recently, [18] proposed a general

learning framework dubbed AtlasNet to take as input a 3D point cloud or an RGB image. It

proceeds by concatenating this data with a sampling of a patch, namely the unit square, before

passing it to multilayer perceptrons (MLPs) with rectified linear unit (ReLU) nonlinearities,

producing as output a point cloud of arbitrary resolution. A mesh can be generated either by
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transferring the connections between vertices of a mesh defined on the patch to their 3D image

points or by using Poisson Surface Reconstruction [13] on a sufficiently dense point cloud.

2.1.2. Volumetric Segmentation

This is a sub-discipline of indicator functions as it consists in giving information about

whether a region of space is filled by the object or is empty. The data structure can be:

• the Delaunay Triangulation of input samples as in [19], [20], [21] and [22].

• voxels: [23] labels them as free space, occupied or unknown. To achieve this, point locations

combined with sensor positions allow computing the ray corresponding to a beam of free

space. An interesting feature is that undesirable moving objects such as humans can be

erased in the final surface thanks to scans of the same area from different sensor positions.

Robust and Efficient Surface Reconstruction (RESR) [19] label as inside or outside

each tetrahedron of the Delaunay triangulation of the point samples. The triangles separating

an empty-labelled tetrahedron from an occupied -labelled one are extracted thanks to a graph-cut

optimisation of an energy function (equation 1) defined thanks to the lines of sight (emanating

from the vertex and pointing at the laser scanner) and the shape of the triangles.

lT = argmin
lT∈LT

(
Edata(lT ) + λ Eprior(lT )

)
(1)

Delaunay-Graph Neural Networks (DGNN) [24] also use this paradigm (equation 1)

but they estimate the occupancy of the tetrahedra thanks to a graph neural network.

2.1.3. Signed-distance function

Another way of generating a watertight surface is to compute the signed-distance function

f to the surface and to extract its zero-level set. This is the approach chosen in Multi-level

Partition of Unity (MPU) [25] and Smooth Signed Distance (SSD) [26].

Recently, DeepSDF [27] has shown how to learn the surface distance field.

2.1.4. Primitive-based

In this field, PolyFit [28] uses RANSAC [29] to detect planar segments and refine them.

The surface is extracted by combining the optimisation of an objective function which favours

data fitting, point coverage and model complexity and the enforcement of watertightness and

manifoldness.
7
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Point Set Structuring (PSS) [20] relies on the Delaunay triangulation of input points

and the labelling of its tetrahedrons as empty or occupied, but their specificity resides in the

extraction of primitives as a pre-processing step, a resampling of the resulting structures and

the combination of points from planar regions and unstructured ones in the reconstruction step.

2.1.5. MLS-based

Moving least squares (MLS) was first introduced by Lancaster in [30], based on the work

conducted by, amongst others, Shepard in [31]. Since then, a tremendous amount of extensions

have been added as pointed out by a survey conducted in 2008 in [32]. For instance, [33], [34]

and [35] significantly contributed to the advances in MLS-based algorithms. As explained in

[32], MLS-based algorithms can be roughly classified into two main categories:

Implicit MLS surfaces require the computation of a level set function of which the zero

isosurface can be extracted.

Projection MLS surfaces consist of first computing a projection operator that maps any

point of the space to a point on the surface. The surface is then made of the set of stationary

points.

2.2. Evaluation of Surface Reconstruction

In order to assess the quality of a reconstruction, there is need for a ground truth, an input

point cloud and a means of calculating the difference between a given output surface and the

so-called ground truth. Let us present the various possibilities that have so far been considered

for these three aspects.

2.2.1. Ground Truth

Ground truth could potentially take any surface form, i.e. implicit field, triangle mesh,

volumetric segmentation, point set, deformed model, skeleton curve, primitives. However, only

two have so far been considered: triangle mesh [36], [12], [6] and implicit field [37].

2.2.2. Input Point Cloud

Producing point samples from a surface can be carried out in several ways:

• Real scanning: Based on a physical object (or scene), laser-based scanning generates a

point cloud directly. Such technologies include Time-of-Flight [1] and Structured-light [2]
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devices. In addition, terrestrial or airborne LiDAR [3] offer the possibility to deal with

large areas.

• Image-based: Multi-view stereo [4] and Structure from motion [5] allow creating a 3D

model from images, which can be the starting point for surface reconstruction.

• Model sampling: Based on a continuous digital input model, synthetic sampling has the

advantage of making it possible to fully control the data. In particular, one can generate

more realistic data by adding noise, outliers, misalignment and occlusions, and by setting

the density. In this field, several procedures have been considered: random or uniform

sampling [12], [38], [39], synthetic raytracing [40], [37], [6] or z-buffering [36]. Of

particular interest is the recent work presented in [41], [6] and [42]. Helios++ [41] is

an open-source tool for the simulation of airborne, UAV-based, and terrestrial static and

mobile laser scanning implemented in C++ . [6] provided an airborne LiDAR simulator

and [42] developed LiDARsim: a virtual terrestrial LiDAR platform generating realistic

point clouds based on a high-quality mesh, free of moving objects.

2.2.3. Comparison

With regards to comparing an output reconstruction, three main possibilities have been

explored:

• Visually: Most of the time, surface reconstruction aims at producing a digital repre-

sentation as visually similar as possible to a real object. Hence, Poisson [13], MPU [25]

and SSD [26] have simply compared models on a visual basis. This obviously raises the

issues of being sensitive to the observer’s perception, conflict of interest and the lack of

quantitative information.

• Point-to-mesh distance computation: When the only ground truth that is available

comes in the form of a point cloud, it is relatively straightforward to compute the distance

from each of those points to the reconstructed model. [9] have evaluated their method

by randomly partitioning their point cloud into two equal-sized subsets: points serving as

input for the reconstruction algorithms and validation points from which distances to the

output meshes are computed.

• Mesh-to-mesh distance computation: This method comes with the advantage of pro-

viding a quantitative quality assessment which is independent of any human bias. [36], [9]
9
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use the Metro tool [43] which works as follows: given two meshes (a sampled one Ms

and a target one Mt), Metro samples Ms and measures the shortest distance from each

sample to Mt. Metro then computes the mean distance, the max and the Root Mean

Square (RMS) over all samples. [6] have used such a distance on the reconstructed and

the ground truth meshes. Their specificity was to filter out triangles further than the

input point cloud used for reconstruction. They thus produce a curve of distances for the

different threshold values of this filtering procedure.

• Mesh-to-implicit distance computation: [37] chose to use an implicit field that we will

call Ω as ground truth, and consequently they adapted the Metro methodology in order

to compute the distance from a nearly uniform sampling of Ω to the evaluated mesh and

vice-versa. The evaluation process answers the question: how well does the reconstructed

mesh fit to the implicit surface computed by the MPU [25] algorithm? To address this

issue, several measures are proposed by the benchmark [37]: Hausdorff distance (equation

4), mean distance (equation 5), max (equation 6) and mean angle deviation (equation 7).

The former two allow us to know how close the two surfaces are to each other while the

latter two give an insight into how similar the local orientation is.

In order to compute these, defining point correspondences between the two surfaces are

needed. Let us denote by M the implicit surface and by M the output triangle mesh. As

defined in [44], the mapping Φ : M −→ M attributes to one point p ∈ M the intersection

of the normal line through p and the mesh M . The inverse mapping Φ−1 : M −→

M attributes to Φ(p) its closest neighbor on the implicit surface M . This definition,

associated with a sampling PM of M produces a set of nearest neighbor correspondences

that we call CM (equation 2).

CM = {(x, p)|p ∈ PM , x = Φ(p)} (2)

By defining the corresponding operator Ψ : M −→ M and a sampling PM of the recon-

structed mesh M , we get CM (equation 3).

CM = {(p, x)|x ∈ PM , p = Ψ(x)} (3)

Denoting |S| = |CM |+ |CM | and with γ(p, x) the angle between the normals NM (p) and
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NM (x), error measures are the following:

H(M,M) = max

{
max

(x,p)∈CM

|x− p|, max
(p,x)∈CM

|p− x|
}

(4)

µ(M,M) =
1

|S|

 ∑
(x,p)∈CM

|x− p|+
∑

(p,x)∈CM

|p− x|

 (5)

HN (M,M) = max

{
max

(x,p)∈CM

γ(p, x), max
(p,x)∈CM

γ(p, x)

}
(6)

µ(M,M) =
1

|S|

 ∑
(x,p)∈CM

γ(p, x) +
∑

(p,x)∈CM

γ(p, x)

 (7)

3. Evaluation protocol

3.1. Intuition

Let us give some examples of situations where current metrics are not adequate to evaluate

surface reconstruction, and what we suggest would be an improvement. This is going to help

understand our metrics’ definitions in Section 3.3.

First, as presented in Section 2.2, comparing a reconstructed mesh with a ground truth point

cloud can be done by computing the distances from those points to the mesh model. While this

seems like a good starting point to assess how well holes have been filled around those points, it

is inadequate to evaluate the overall accuracy of the surface. Figure 2 shows an example of such

a situation where a surface would be evaluated as almost perfect even though large portions

are clearly incompatible with the ground truth if we take into account the positions from which

points have been acquired.

Secondly, it is possible to measure accuracy solely with ground truth points by sampling

the reconstructed surface and measuring the distance from these samples to the ground truth

points. Nevertheless, large pieces of the reconstructed surface might be judged as being of poor

quality (if lying far from the nearest ground truth point) despite being correct, just because of

a low ground truth density. We want to assess both accuracy and completeness only in regions
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where ground truth information is available, and this is possible using sensor positions as shown

in Figure 2.

Figure 2: The importance of sensor positions: the dashed part of the reconstructed surface can be identified as
wrong by making use of sensor positions when the high-quality point cloud does not provide enough information.

Figure 3: These four cases would be evaluated in the same way by a basic point-to-mesh distance. However, they
are very different in terms of what a human being would be able to see from the sensor position.

Thirdly, as surface reconstruction has often been evaluated visually, we wanted to find

metrics that would imitate this human intuition-based assessment. We believe that visibility-

based metrics are more appropriate for assessing how the reconstructed surface matches the

real one everywhere where we can see and compare them. Figure 3 shows four situations for

which the piece of reconstructed surface would be marked similarly by a point-to-mesh distance.

The distance from the high-quality point to the nearest piece of reconstructed surface is indeed

the same in all four situations. However, we are certain that they should correspond to three

completely different outcomes and we want our metrics to be able to differentiate between them.

In particular:

• in (a), the reconstructed surface lies slightly behind the high-quality point. We consider

it as correct at the threshold defined by our tolerance zone.
12



/ 00 (2024) 1–37 13

• in (b), the reconstructed surface lies slightly in front of the high-quality point. As in (a),

we consider it as correct even though we can measure a slight error.

• in (c), whilst the piece of real surface corresponding the high-quality point has been recov-

ered just like in (a), the reconstructed surface hides the nearest intersection by crossing

the laser ray, resulting in an obvious inaccuracy. What one would see by looking in the di-

rection of the laser ray is not the right piece of reconstructed surface but rather something

else far in front of it.

• situation (d) might look similar to (a) but there is actually no intersection between the

reconstructed surface and the laser ray. Consequently, what one would see by looking in

the direction of the laser ray is not the right piece of reconstructed surface but something

else in the background. We thus consider that the surface has not been recovered at all

here.

ETH3D benchmark [45] proposed metrics to evaluate how well a two- or multi-view stereo

point cloud matches a LiDAR-based one, using sensor positions. While surface reconstruction

is a different task to MVS (in particular in terms of the expected output properties), [45] still

evaluates the matching between two 3-dimensional structures and we were inspired by their use

of sensor positions. However, we chose different paradigms that are more adapted to surfaces,

so our evaluation protocol is considerably different.

The ETH3D benchmark [45] defines completeness as the proportion of ground truth points

for which the distance to its closest reconstructed point is below a given threshold. We could

keep this definition and find the point from the reconstructed surface that minimises the dis-

tance to each point of the high-quality point cloud. Nonetheless, given that we know in what

direction this point is supposed to be encountered thanks to the sensor position, we find it more

relevant to compute the distance between the high-quality point and the nearest intersection

between the corresponding laser ray and the mesh model. In other words, while the most nat-

ural adaptation of this point-to-point distance would be a point-to-mesh distance, we believe

that for each ray that hit the the real surface there should be a piece of reconstructed surface

close by and along the ray.

However, we also leverage the information given by each laser ray: the space between each

13
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sensor position and its associated high-quality point should be empty. We soften this property

by defining a tolerance zone: a piece of reconstructed surface will be considered as correct if

its distance along the ray from the high-quality point is smaller than a given threshold dmax.

Every piece of surface further than dmax and situated in front of the high-quality point will

affect the accuracy of the model.

Contrary to ETH3D benchmark [45], we do not model the shape of a laser beam as a trun-

cated cone. The first reason for this is that we do not need to, since the model we are trying

to evaluate (a surface) is continuous instead of discrete (a point cloud). Hence, we are not at

risk of missing any part of it. In addition, it makes it simpler to get a point as the intersection

between a ray and a piece of surface. This way, every couple (ray - piece of surface) gives the

same amount of information.

[45] uses voxels to prevent a “cheating” strategy from achieving both high accuracy and com-

pleteness despite raising other issues. For example, regions of low ground truth density con-

tribute as much as high density ones while encapsulating less information. A cheating strategy

for surface reconstruction would be to add several parallel layers of surface in regions of high

confidence. We do not need to discretise space as in [45] since for each ray we propose to keep

only the closest intersection as a potential correct one and penalise all the ones situated in front

of it. Note that even layers situated behind the closest intersection might be obstacles to rays

pointing at another object in the background.

If the nearest intersection is found behind the high-quality point at a greater distance than

dmax, or if no intersection is found at all, then we consider that this piece of surface has not

been recovered. This therefore affects the completeness of the model.

3.2. Definitions and notations

In this paper we want to evaluate the quality of surface reconstructions from low-quality

data PLQ, with only having access to high-quality data PHQ of the same scene and without

having access to the perfect ground truth surface that the algorithms are supposed to produce.

• PLQ: the low-quality point cloud that will be fed to the evaluated surface reconstruction

methods to produce the output surface meshes to be evaluated.

14
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• PHQ: the high-quality (ground-truth) point cloud with better coverage, higher density

and less noise than PLQ and for which we know the sensor positions, defining one ray per

point.

• ME : the reconstructed mesh to evaluate, produced by an algorithm from PLQ.

• dmax: the maximum distance at which we evaluate the reconstruction. It is a parameter

which influences the different metrics as we use it to separate noise (distance < dmax)

from outliers (distance > dmax).

Figure 4: Toy example to visualize the definitions of the metrics. The real surface has been scanned from two
positions: O1 and O2. A given real laser ray (the thick one) was cast from O1 and it hit the real surface at
Gt. Note that the position of the intersection might be noisy, hence the shift between the real surface and the
high-quality point cloud. We compute all intersections between the associated virtual ray (i.e. the extension of
the real laser ray and the reconstructed surface. In this case, it results in six intersections I1,...,6. The closest
intersection to Gt happens to be I2 so the “ray distance” metric for that particular ray is the distance (Gt, I2).
We found one intersection I1 on the way to the closest intersection I2 which is counted as a FP. Secondly, if
(Gt, I2) < dmax, Gt is to be counted as a TP, otherwise it will not be taken into account in the evaluation since
it is situated after Gt. Note that this piece of surface might still be evaluated thanks to another ray (as one
emanating from O2, for example).

3.3. Metrics definitions

Similar to [6], we would like to assess both the precision of each part of the reconstructed

surface (each part of the surface should lie near some part of the real surface) and the com-

pleteness of the model (there should be as few missing parts of the real surface as possible).

As we do not have access to a digital model of the real surface, we cannot compute the actual

precision and recall as in [6]. Our knowledge of the ground truth is limited to the high-quality

data PHQ. However, we also know where the surface is not supposed to lie since we know

the sensor position from which every point of PHQ has been acquired, thus defining a ray of

free space. Therefore, we define a precision metric that penalises inconsistencies between the
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reconstructed surface and the visibility information contained in PHQ. We propose an equiva-

lent of the recall metric: for each [OP ] ray from PHQ, we compute the distance from the P to

the closest intersection between the [OP ) half line and the reconstructed surface. Here is the

formalisation of these metrics in more detail:

• “Ray distance”: for each point/ray (p, r) ∈ PHQ, we compute the distance from p to the

closest intersection (which we will denote as c) between r and ME (among all potential

intersections, we choose the one with the smallest distance with respect to p). If this

distance is < dmax then the piece of reconstructed surface is considered as being correct

and we add this distance to an array of distances.

• “Precision”: for each point/ray (p, r) ∈ PHQ, if the “ray distance” (between p and c) is

< dmax then we count c as a True Positive (TP) (since there is a piece of surface and it is

correct). Otherwise, if the intersected point c lies at a distance greater than dmax and it is

before the corresponding high-quality point p, we consider it as being false and we count

it as a False Positive (FP) (since there is a piece of surface and it is false). We consider

that we cannot say anything about the closest point c if it lies at a greater distance than

dmax and it is situated after the corresponding high-quality point p (neither can we for all

intersected points lying after it), so we just ignore them. All intersected points lying before

this closest intersection c are also counted as FP as they are inconsistent with the cor-

responding ray of free space (p, r). This is enough to define the precision ratio (equation 8).

• “Recall”: it is defined as the ratio between the number of TP and the number of cast rays

(equation 9. Every high-quality point p ∈ PHQ is either mapped to its corresponding TP

(in which case the piece of real surface has actually been recovered by the algorithm) or

not (meaning a lack of exhaustiveness of the reconstruction and corresponding to a False

Negative FN ). The number of rays thus equals the sum of the TP and the FN.

• “Cumulative distances”: the cumulative histogram of the ray distances where the x-axis

corresponds to the distance and on the y-axis we plot the number of points for which the

ray distance is below the x-distance, divided by the total number of rays cast. It contains

the information of both recall (the right-most value) and mean ray distance. Figure 5b

shows an example of this histogram.
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(a) Cumulative histogram: each bar indicates the total
number of points for which the ray distance is smaller
than the corresponding distance (d1, d2, . . . dmax).

(b) Normalized cumulative histogram: the value of each
bar from graph (a) is divided by the total number of
rays. The value corresponding to dmax is the recall.

Figure 5: Construction of the “cumulative distances” metric. In this example, we assume that 4000 rays have been
cast. 3000 intersections correspond to True Positives (their ray distance is smaller than dmax). The distribution
of these 3000 ray distances is shown in graph (a). Cumulative population values cannot be compared between
different datasets, so we normalize them by dividing them by the total number of cast rays from the corresponding
dataset. This leads to the normalized “cumulative distances” shown in graph (b).

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
=

TP

Number of rays
(9)

F-score = 2 · precision · recall
precision + recall

(10)

As we define precision and recall as ratios, the harmonic mean (F-score, see equation 10) allows

ranking the methods by taking into account both metrics.

3.4. Tuning / Training

The algorithms we evaluate in this paper are either tunable for the most part or they learn

parameters in order to reconstruct surfaces. For example, DGNN [24] needs a training dataset

in order to learn the parameters of its model and Poisson [13] can be run at different resolu-

tions by changing the depth of the octree that is used. In order to be as fair as possible, we

used the same dataset to tune or train the algorithms. We therefore ran the non-learning-based

methods with different values for their parameters and carried out an evaluation. A first inter-

esting result is that for some methods, it can be hard to obtain a good performance regarding

the precision and the recall metrics at the same time. For PSS, the higher the value of the

trade-off parameter λ (therefore the more importance given to the prior term, see equation 1),

the higher the precision (up to a certain value) but the lower the recall. Maximizing the score

of one metric (by varying λ) results in minimizing the score of the other one (we explain why in

Section 5). Thus, we selected the two λ values that maximize each of these metrics individually.
17
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The tuning/training dataset that we decided to use is composed of three scenes from STRAS .

The reason behind this choice is the availability of ground-truth meshes which are absolutely

necessary for the training phase of DGNN. We then also used these three scenes to find the best

parameters (in terms of ray distance, precision and recall) for the non-learning-based algorithms.

4. Input data

We aim to evaluate the algorithms in very different scenarios as the methods’ priors might

influence the quality of the reconstruction depending on the type of scene or the type of data

involved. We therefore compute the metrics introduced above on three significantly varying

datasets.

4.1. STRAS: Strasbourg dataset and LiDAR simulator

Figure 6: Strasbourg scene (mesh in grey, point cloud in blue)

In order to control the data itself, we started by using a synthetic dataset 1 taking the form

of a high-quality mesh representing a large area covering the “Métropole de Strasbourg”. Figure

6 shows a 250 meter by 250 meter tile of this mesh. In order to generate the ground-truth and

the input point clouds PHQ and PLQ, we used the aerial LiDAR simulator from [6]. This is

because such a large urban environment is typically scanned using an airborne LiDAR system.

Their code offers the possibility to simulate a plane flying above the scene with the laser ray

1The dataset is available at: 3d.strasbourg.eu. It was produced by “Ville et Eurométropole de Strasbourg”
with financial support from the European Union as part of a “Fonds Européen de Développement Régional”.
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of a LiDAR system following a parallel line pattern. Realistic noise can be added as a post-

processing step to imitate typical devices from the market. The problem with the parallel line

pattern is that facades that are perpendicular to the direction of the plane are not reachable

by the laser ray and thus are absent from the resulting point cloud. In order to overcome this

issue, we implemented the elliptical scanning pattern . It is indeed better suited to urban

environments, for the laser ray will be able to point at far more facades than with the parallel

line pattern, resulting in a better coverage.

4.1.1. Elliptical aerial LiDAR simulator

We use (O,−→ex,−→ey ,−→ez ) as the global coordinate frame, in which mesh vertices coordinates are

expressed as shown in Figure 7. We model the acquisition by a linear trajectory of the LiDAR

optical centre M moving straight from A (xA, yA, zA) to B(xB, yB, zB) at constant speed v0.

We define a local coordinate frame
(
M,

−→
i ,

−→
j ,

−→
k
)
associated to M defined as:

−→
k =

−−→
AB∥∥∥−−→AB∥∥∥ ;

−→
j =

−→ez ∧
−→
k∥∥∥−→ez ∧ −→
k
∥∥∥ ;

−→
i =

−→
j ∧

−→
k (11)

Denoting −→r as the direction of the laser ray, and using (M,−→u ,−→v ,−→w ) as the canonical spherical

coordinate frame, −→r is rotating around −→w at constant angular speed ω = ϕ̇ with ϕ as the

azimuthal angle of −→r . The polar angle θ is constant. In accordance with [6], the noise that is

added to the point positions follows a normal distribution that we can split between a planimetric

∆x,∆y and altimetric ∆z component:

∆x,∆y ∼ N
(
µxy, σ

2
xy

)
; ∆z ∼ N

(
µz, σ

2
z

)
(12)

Figure 7: Elliptical scanning pattern.
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The values of all the parameters we used can be found in Table 1. We chose these values

based on the default values of a real aerial LiDAR system (Leica TerrainMapper). In the future,

we intend on fine-tuning this simulator to maximize point coverage.

Table 1: Values of experimental parameters used.

Symbol Value Unit Description

h 1 000 m Flying altitude

v0 60 m.s−1 Flying speed

ω 150 Hz Angular speed

θ0 160 (°) Polar angle

fp 400 000 Hz Pulse frequency

σxy 0.13 m Planimetric error

σz 0.05 m Altimetric error

4.1.2. Experimental setup

We aim to produce two point clouds PHQ and PLQ in such a way that PHQ should have

less occlusions and be denser than PLQ. The scenes are all 250 meter by 250 meter tiles of an

urban environment for which positions are expressed in a global coordinate frame (O,−→ex,−→ey ,−→ez )

such that −→ez represents the ascending vertical direction. In our setup, a trajectory of the

LiDAR system for each scene is a single straight pass of the plane along axis −→ey for x =

αx (xmax − xmin) , αx ∈ [0, 1]. We generate PLQ thanks to one pass of the plane with αx = 0.5

and PHQ thanks to three passes with αx ∈ {0.25, 0.5, 0.75}. We denote Pαx as the point

cloud resulting from the flight x = αx (xmax − xmin). We then have: PLQ = P0.5 and PHQ =

P0.25 ∪ P0.5 ∪ P0.75. This way, PLQ forms part of PHQ and contains a lot more occlusions in

particular on facades parallel to the direction of the plane. Figure 8 gives an example of such

a situation.

Figure 8: Left: Mesh, Center: PLQ, Right: PHQ. The facades parallel to the direction of the plane are a lot
more occluded in PLQ.
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4.2. ENSG dataset: indoor and outdoor terrestrial LiDAR scan

As the original goal of our study was to propose an evaluation protocol suited for real data,

this dataset is only based on real data that we acquired ourselves. The resulting point clouds

intensity channel can be visualized on Figure 9.

4.2.1. Stationary LiDAR station

We used the stationary LiDAR station “Leica ScanStation P40” for which we will give a brief

introduction. Once the station is settled, rays are cast 360◦ horizontally around its origin and

290◦ vertically (the ground area immediately underneath the station remains unobserved during

the acquisition). It can acquire up to 1, 000, 000 points per second from 0.4 meter to 270 meters

with a 3D position accuracy of 3 millimeters at 50 meters. In order to satisfy the condition

of PHQ being of higher quality than PLQ, we decided to acquire points from more viewpoints

to generate PHQ, using the same LiDAR station. We thus scanned each environment from

five positions: the four vertices of an approximately regular 1.5 meters side length tetrahedron

(O1, O2, O2, O4) and its center of mass O5 as shown in Figure 10. In order to evaluate surface

reconstruction algorithms in several different scenarios, we repeated this procedure for three

scenes:

• “Building”: an outdoor scene made of a building, a sloped road, trees and an opening to

another scene called “Parking Lot”.

• “Parking Lot”: an indoor scene with pipes, partially occluded cars and open doors, in-

cluding one communicating with the outdoor scene “Building”.

• “Clutter”: a closed indoor scene with a lot of occlusions due to a high density of objects.

4.2.2. Matrix format and sub-sampling

Following the definition of our protocol (see Section 3), we need to generate poorer-quality

point clouds to run reconstructions. Our LiDAR system has a spherical geometry . The hori-

zontal resolution and vertical resolution of the scanner define a fixed number w of values for ϕ

and a fixed number h of values for θ respectively. Laser rays are thus cast in the directions given

by every pair of angles (ϕ, θ). We can thus represent the points as a matrix of height h and

width w and then index all points by their (i, j) ∈ [|1, h|]× [|1, w|] coordinates. Figure 9 shows

the intensity of the returns in this matrix-like format. Each raw acquired point cloud did not
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fit into the memory of our machine so we down-sampled them by keeping odd-indexed points .

Starting from the raw point clouds with origins centered on O1, O2, O3 O4, and O5 respectively,

we down-sampled them all (roughly four times) following this matrix-based scheme and PHQ

is the union of these five four-time down-sampled point clouds. We repeated this matrix-based

down-sampling scheme on the point cloud centered on O5 to generate PLQ.

4.3. ETH3D dataset

[45] presents a two- and multi-view stereo benchmark. Their dataset contains several scenes

with:

• input images at 24 Megapixel resolution on several scenes

• ground truth 3D laser scan point clouds

4.3.1. Generating the point clouds: Multi-View Stereo and real LiDAR

In order to generate the low-quality data, we used the OpenMVS [46] library to gener-

ate dense point clouds from images using the provided camera poses of three scenes (Terrace,

Courtyard , Pipes) of the ETH3D train dataset. We used the DensifyPointCloud tool of Open-

MVS with the standard settings, except for the following parameters: number-views-fuse = 2,

optimize = 0 and resolution-level = 4. We used the provided LiDAR point clouds as our high-

quality data. A typical MVS pipeline generates a much sparser and more noisy point cloud than

what a laser scan provides. It also contains more outliers. For all these reasons, we consider it

relevant to carry out an evaluation on a set of MVS-based point clouds. We thus used three

scenes from the ETH3D dataset [45], which can be seen in Figure 12.

5. Results

In this survey, we assessed:

• RESR [19]

• SSD [26] with two combinations of the octree depth and the B-spline degree parameters:

(depth = 8, degree = 2) and (depth = 12, degree = 3).
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• Poisson [9] with two values for the octree depth parameter: 8 and 11. The B-spline degree

will always be 2.

• DGNN [24]

• PSS [20] with two values for the trade-off parameter: 0.1 and 0.6

• Agisoft Metashape 1.6.4 (the user manual can be found here) with Extrapolated mode

and ultra high resolution. Only the meshing tool has been used on the point cloud data.

For the ETH3D dataset only, we assess two other surface reconstruction algorithms as they

are part of the OpenMVS [46] pipeline. Mesh reconstruction is initiated using Exploiting

Visibility Information in Surface Reconstruction to Preserve Weakly Supported

Surfaces (WSS) [47]. A refinement step is then carried out using High Accuracy and

Visibility-Consistent Dense Multiview Stereo (DMS) [48]. We thus computed the met-

rics on the resulting meshes from both these methods. According to the definitions provided in

Section 3.3, Tables 2, 3, 4 and 5 give the mean ray distance (for those smaller than dmax), the

precision and recall ratios as well as the F-score.

Table 2: Raw numerical results for dmax = 50 cm (MD stands for mean ray distance, P for precision, R for recall
and F1 for F-score)

STRAS PC3E44 3 (dmax = 50 cm)

Method TP FP TP + FN MD (cm) P (%) R (%) F1(%)

RESR 1278734 57089 1365120 6.58 95.73 93.67 94.69
DGNN 1246228 72899 1365120 6.79 94.47 91.29 92.85

Poisson 11/2 1267301 128888 1365120 8.91 90.77 92.83 91.79
PSS 0.6 1217138 81549 1365120 7.39 93.72 89.16 91.38
SSD 12/3 1271969 172285 1365120 9.56 88.07 93.18 90.55
SSD 8/2 1203150 167204 1365120 13.04 87.80 88.14 87.97

Poisson 8/2 1174069 151134 1365120 12.77 88.60 86.00 87.28
A. Metashape 1033179 195725 1365120 19.41 84.07 75.68 79.66

PSS 0.1 1280230 686825 1365120 7.47 65.08 93.78 76.84

5.1. STRAS dataset

Table 2 shows the results for one single mesh from the STRAS dataset and Table 3 shows the

average of those results for the three meshes of STRAS dataset. In accordance with the survey

conducted and published in [6] on the same dataset but with different assumptions and metrics,

Table 3 shows that RESR achieves the best performance again on the urban environment from

STRAS regarding both precision and recall. As evaluating surface reconstruction from real
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Table 3: Average numerical results on the three scenes from STRAS dataset sorted by decreasing F-score for
dmax = 50 cm

STRAS (dmax = 50 cm)

Method mean distance (cm) precision (%) recall(%) F-score(%)

RESR 5.98 96.68 94.88 95.77
DGNN 6.13 96.08 92.56 94.29

Poisson 11/2 7.99 93.19 94.31 93.75
PSS 0.6 6.67 95.08 91.35 93.17
SSD 12/3 8.53 90.72 94.63 92.63
SSD 8/2 11.57 90.11 90.48 90.30

Poisson 8/2 11.49 91.11 88.39 89.73
A. Metashape 16.21 87.92 80.63 84.11

PSS 0.1 6.76 72.72 95.00 82.28

mean methods 9.04 90.40 91.36 90.67

data only is harder than using synthetic data (we do not have an exhaustive ground truth), it

is a very sound validation that the metrics that we defined without access to the ground truth

surface show similar tendencies to the metrics that are based on ground truth surfaces.

We also carried out a more detailed evaluation by testing several values for the main pa-

rameters of selected methods. We found that the trade-off of PSS [20] has a big effect on the

metrics. More precisely, the lower we set it (the more confidence we give to the data), the lower

the precision but the higher the recall (and vice versa). A high confidence in the data results

in a lot more interfaces between occupied tetrahedra and empty ones. Conversely, a higher

trade-off λ gives more power to the regularization term, resulting in fewer couples of adjacent

tetrahedra being labeled differently, and so fewer triangles in the output mesh. When more

confidence is given to the data, there are a lot more undesired triangles “floating” in regions of

free space, which dramatically affects the precision. However, small structures might be erased

from the mesh if less confidence is given to the data term, resulting in a poorer recall.

Poisson [13] and SSD [26] are both influenced positively by an increase in the octree depth.

This was expected since more points are used to reconstruct the mesh, which results in an in-

crease in the computation time and memory footprint.

DGNN performs a lot better on the STRAS dataset than on the two others, which high-

lights a problem in its capacity to generalize to scenes that differ from the ones in the training

set. However, its poorer F-score performance on ETH3D and ENSG is mostly due to the
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precision metric. DGNN often succeeds in recovering the scene features but adds too many

undesired triangles in the scene.

While precision, recall and ray distance provide complete information on the quality of the

reconstruction, one might find it more intuitive to start by having a look at the cumulative

distances shown in Figure 13. The precision at small range can be estimated as the area under

the curve. The closer the curve is to the top left-hand corner, the better it is since this means

that all the True Positives are actually very close to it. Besides, the highest value of each curve

is the recall of the corresponding method so the gap between the cumulative population in the

last category and the line y = 1 should be as small as possible.

5.2. ENSG dataset

Table 4: Average numerical results on the three scenes from ENSG dataset sorted by decreasing F-score for
dmax = 20 cm

ENSG (dmax = 20 cm)

Method mean distance (cm) precision (%) recall(%) F-score(%)

RESR 0.45 93.10 95.99 94.51
Poisson 11/2 0.90 78.38 96.96 86.22
Poisson 8/2 2.72 78.66 88.16 83.05
SSD 12/3 1.27 72.41 96.04 82.23

A. Metashape 1.63 79.00 83.95 81.37
SSD 8/2 3.04 71.95 87.77 78.96
DGNN 0.49 52.99 96.22 68.28
PSS 0.6 0.54 28.44 97.92 43.94
PSS 0.1 0.54 22.30 98.19 36.18

mean methods 1.29 64.14 93.47 72.75

The ENSG dataset, having been generated using a stationary LiDAR system, is the one con-

taining the least amount of noise hence the overall good performance of all of the methods. In

particular, we can see that the mean distance is generally a lot smaller than with other datasets

even though the scenes themselves have much more complicated geometries and more occlusions.

Figure 14 shows the meshes reconstructed by every assessed algorithm on the Parking Lot

scene (part of the ENSG dataset). One can fairly easily interpret the performance achieved by

these methods by analysing the type of mistake they made on the corresponding scene. RESR

succeeds at reconstructing most of the visible parts, and very few undesired triangles lie in free

space (most of them are connecting the pipes to the wall and the ceiling).
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At first glance, Poisson 11/2 reconstruction seems to be a lot more accurate than Poisson 8/2

so it might not be obvious why they have the same precision. This situation actually shows the

interest of the mean distance metric. While the two reconstructed models are structurally the

same, the difference between them is visible at close range: under the threshold dmax. Con-

sequently, Poisson 8/2 has a much higher mean distance than Poisson 11/2 but achieves a

similar precision. The same kind of argument holds for explaining the relatively poor perfor-

mance of SSD 12/3 and A. Metashape: whilst being locally more accurate than Poisson

8/2, the meshes are structurally not in accordance with the visibility information provided by

the high-quality point cloud. The precision metric is dramatically affected by large portions of

surface lying in free space. DGNN and PSS have the same problem: whilst having a high

recall, denoting their capacity to recover most of the existing pieces of surface (and very accu-

rately, given the very low mean distance metric), they connect too many regions of space with

triangles lying in empty space, thus affecting their precision.

The accordance between all of these visual observations and the corresponding quantitative

results given by our metrics prove their relevance.

5.3. ETH3D dataset

Table 5: Average numerical results on the three scenes from ETH3D dataset sorted by decreasing F-score for
dmax = 20 cm

ETH3D (dmax = 20 cm)

Method mean distance (cm) precision (%) recall(%) F-score(%)

DMS 2.04 95.33 93.72 94.47
Poisson 11/2 2.56 93.91 94.04 93.96

RESR 2.62 94.12 92.65 93.29
A. Metashape 2.57 95.09 91.18 93.00

WSS 2.66 91.31 93.79 92.51
SSD 12/3 2.66 90.65 94.44 92.48
SSD 8/2 4.21 93.38 89.03 91.13

Poisson 8/2 3.99 94.66 86.94 90.59
DGNN 2.61 79.47 93.63 85.95
PSS 0.6 2.52 67.41 94.63 78.52
PSS 0.1 2.56 53.79 95.16 66.99

mean methods 2.82 86.28 92.66 88.44

MVS-based point clouds are known to be noisy and contain quite a lot of outliers. This

seems to have an effect on the performances of the different methods. The ones performing best

on ENSG and STRAS seem to struggle more, and surprisingly, Poisson 8 [13] achieves a fairly

high precision on this dataset. We believe that this is because it is more capable of filtering out
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the noise with an 8-depth than with an 11-depth octree. That would explain why SSD 8/2 also

has a better precision than SSD 12/3. However, their poorer recall indicates that more pieces

of real surface have not been recovered.

The method that performs best, however, is DMS, which is not very surprising considering

the fact that it is the best version of a real MVS pipeline, fed with images and not with an

image-derived point cloud.

The relatively good performance of A. Metashape on ETH3D compared to the other

datasets might suggest it copes pretty well with outliers. More generally, considering it is a

licensed solution, we might have expected a better overall performance on at least one of our

datasets.

5.4. General remarks

Overall, RESR is the method that performs best almost everywhere. DGNN shows that

learning how to reconstruct large, complex and open scenes is indeed possible, but it faced gen-

eralisation problems since the metrics on ENSG and ETH3D datasets are significantly lower

than those on STRAS (from which its training set was extracted). However, with RESR and

DGNN being the only methods from this survey making use of sensor positions, we believe

that this is an important reason behind their good results. Sensor positions give an important

piece of information that neither the points themselves nor the associated normals provide.

Poisson generally performs structurally better than SSD. Small-scale differences are no-

ticeable when changing the octree depth used by both these algorithms.

PSS often reconstructs meshes very close to the real surface but also connects pieces of

surface in regions of space that should remain empty. We can assume that we failed to find the

right parameter settings because it was definitely the hardest algorithm to tune, but this is the

best performance we managed to get.
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6. Conclusion

Surface reconstruction is hard to evaluate since it is impossible to directly compute the

difference between the real surface and a reconstructed one. It has often been assessed visually

because it seems fairly intuitive to know whether a piece of surface has been accurately recov-

ered. However, human perception can be unfair and a purely visual evaluation lacks quantitative

information. In this paper, we proposed new metrics to assess surface reconstruction. We have

leveraged the visual information obtained by combining the acquired points and the associated

sensor positions in order to define what we believe are more relevant metrics than the ones

currently used. They imitate the process of a human being looking at and comparing the two

surfaces (the real one and the reconstructed one). This goal has been achieved since our survey

validates behaviours that a human can interpret by just looking at the meshes. In Section 5 we

drew parallels between the specific visual observations and the quantitative evidence provided

by our metrics that confirms them.

Our metrics enable the assessment of the completeness of the reconstructions as well as their

precision both locally and globally. One can thus analyse the results from different points of

view. As a relevant outcome, our survey also confirms that sensor positions are very relevant

when trying to separate occupied from empty space.

As well as all these advantages that make surface reconstruction evaluation more objective,

the fact that we only use raw data acquired with basic sensors makes it easy to set up a new

experiment. Having access to expensive data is not a requirement. We provide a tool to make

surface reconstruction evaluation easier and wish to see it used widely.
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Figure 9: Equirectangular projection of the LiDAR points. Top: Outdoor scene (“Building”) from O3 - Middle:
indoor scene (“Parking Lot”) from O2 - Bottom: Indoor Scene (“Clutter”) from O1. “Building” and “Parking
Lot” share some space thanks to what can be seen through the open door in the middle of both images.
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Figure 10: Tetrahedron-like viewpoints. (O1, O2, O2, O4) form an approximately regular 1.5 metres side length
tetrahedron and O5 is positioned at its centre of mass. The black rectangle represents a room in which we
installed our stationary LiDAR.

(a) LiDAR Point Cloud (b) Image Point Cloud

(c) LiDAR Point Cloud With Visibility (d) Image Point Cloud With Visibility

Figure 11: Point Clouds with Visibility Information: Terrestrial point clouds (a, b) from the Terrace scene
of ETH3D [45]. We visualise some of the sensor positions and lines-of-sight (c, d).
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Figure 12: Images of the three scenes from the ETH3D dataset we used. Top: Outdoor scene (“Courtyard”) -
Middle: indoor scene (“Pipes”) - Bottom: Outdoor Scene (“Terrace”).
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Figure 13: Cumulative distances over the three scenes from STRAS dataset for dmax = 50 cm.
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(a) RESR (b) Poisson 11/2

(c) Poisson 8/2 (d) SSD 12/3

(e) A. Metashape (f) SSD 8/2

(g) DGNN (h) PSS 0.6

(i) PSS 0.1

Figure 14: Reconstructed meshes from the ENSG Parking Lot scene.
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