

Deep Surface Reconstruction from Point Clouds With Visibility Information Raphael Sulzer¹, Loic Landrieu¹, Alexandre Boulch², Renaud Marlet^{2,3}, Bruno Vallet¹

¹LASTIG, Univ Gustave Eiffel, IGN-ENSG, F-94160 Saint-Mandé, France ²Valeo.ai, Paris, France ³LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France

Introduction

- Surface reconstruction from point clouds has recently been addressed by the deep learning community
- Most deep surface reconstruction (DSR) networks only operate on point locations and ignore sensor poses
- In this work, we consider a 3D point cloud P where each point $p \in P$ has some coordinates $X_{D} \in R^{3}$ and coordinates of the sensor observing it $S_{D} \in R^{3}$
- We propose two simple ways to augment a point cloud with visibility information using the sensor poses and adapt DSR methods to use such a visibility-augmented point

Method

- Sightline Vector (SV): For each $p \in P$, we define a unit vector $v_{D} \in R^{3}$ pointing from the observation X_{p} to the sensor S_{p} : $v_{p} = (S_{p} - X_{p}) / // S_{p} - X_{p} //$
- Auxiliary Point (AP): We augment each point p with a before-point p_{h} and an after-point p_{a} , located along the sightline on each side of p: X_{pb} = $X_p + dv_p$, $X_{pa} = X_p - dv_p$, where d is the average distance from a point to its nearest neighbor
- **O**
- To identify the point type we use tags t $\in \mathbb{R}^2$: t_p = [0 0] (observed point), $t_{pb} = [1 0]$ (before-point), and $t_{pa} = [0 1]$ (after-point)
- When combining both kinds of visibility information (SV+AP), before-point p_h and after-point p_a are given the same sightline vector as their reference point, i.e., $v_{pa} = v_{pb}$ = v_p , and we take as network input $I_p = (X_p \oplus v_p \oplus t_p) \in \mathbb{R}^8$
- We can adapt most DSR networks to handle visibility-augmented point clouds with only few modifications:
- i. We change the input size (number of channels) of the first layer of the network (generally an encoder), increasing it by 5
- ii. We directly add auxiliary points to the point cloud, thus tripling the number of input points. The batch size may need to be adjusted to fit a larger point cloud in memory. The rest of the network stays unchanged.

Results

• To validate our design we compare various ways to add visibility information to ConvONet [1]. We train different models on the shape dataset ModelNet10 and compare the mean volumetric IoU of reconstructed test shapes:

Model	SV	AP	IoU ↑	
ConvONet-2D (3 × 64 ²) [25] + sightline vectors (SV) only + auxiliairy points (AP) only + both SV and AP	✓ ✓	✓ ✓	0.853 0.871 0.881 0.889	(a) Reconstruction using only the points position.
+ sensor position + unnormalized SV	$S_p \\ S_p - X_p$		0.870 0.870	
 + estim. normals / estim. orientation + estim. normals / sensor orientation + true normals 	Jets [40] / MST [7] Jets [40] / sensor [7 GT normals	']	0.853 0.868 0.879	

- We also train Points2Surf [2], Shape As Points [3] and POCO [4] with augmented point clouds (SV+AP). The mean volumetric IoU of the ModelNet10 test set increases by +1 **IoU pt** compared to reconstructions from models trained on bare point clouds.
- We also test the same models on unseen shape categories from ShapeNet. Here the mean volumetric IoU increases by +30 IoU pts (ConvONet), +3 IoU pts (Points2Surf), +25 IoU pts (Shape As Points) and +40 IoU pts (POCO).

Conclusion

• Visibility information improves reconstruction accuracy as well as generalization capability of DSR networks to unseen domains

References

[1] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger, "Occupancy networks: Learning 3D reconstruction in function space," in CVPR, 2019.

[2] P. Erler, S. Ohrhallinger, N. Mitra, and M. Wimmer, "Points2Surf: Learning implicit surfaces from point clouds," in ECCV, 2020.

[3] S. Peng, C. M. Jiang, Y. Liao, M. Niemeyer, M. Pollefeys, and A. Geiger, "Shape as points: A differentiable poisson solver," in NeurIPS, 2021.

[4] A. Boulch and R. Marlet, "Poco: Point convolution for surface reconstruction," in CVPR, 2022.

Université Gustave Eiffe

Code & Data

