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In this supplementary document, we first discuss the limitations of our method
in Section 1. In Section 2, we provide implementation details about the evalu-
ation metrics, our algorithm and the baseline methods. Finally, we provide an
additional comparison with Points2Poly [3], additional applications and experi-
mental results in Section 3.

1 Limitations

No Optimality Guarantee Our algorithm does not offer the guarantee to
return the optimal solution in terms of minimal number of cells or splitting
operations. Reaching optimality is very challenging here, because global opti-
mization techniques are typically not designed to operate on the configuration
space of tree data structures built sequentially via costly geometric operations.
Monte Carlo Tree Search can support the exploration of a BSP-tree space, but in
practice it increases processing time by at least two orders of magnitude without
guaranteeing optimality or better arrangements than ours.

Dependency on Planar Shape Detection. Our modelling pipeline depends
on the quality of the detected planar shapes from point clouds. The detection
of planar shapes is robust to noise, outliers and point density, but only weakly
to missing data. Planar shapes cannot be detected for unseen parts of objects
or scenes during the acquisition, e.g . due to occlusion. One possible solution
is to generate artificial planar shapes to complete missing data. However, such
a completion strategy relies upon the insertion of strong shape priors, e.g . the
generation of orthogonal planar shapes on borders of input points [2], which
reduces the flexibility and applicability of the method. Another solution is to
rely on point consolidation or neural surface reconstruction methods for pre-
processing the input to recover parts of missing data.

Fully Convex Objects. The perfomance of the construction algorithm is re-
duced when reconstructing fully convex objects such as a sphere (see Fig. 1) or
cylinder. This is because sorting condition (ii) is never valid if all input planar
shapes lie on the convex hull of the object. However, very few real-world ob-
jects exhibit a fully convex shape. Moreover, the best reconstruction technique
to apply to fully convex shapes is a simple computation of the convex hull.
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Fig. 1: Reconstruction of a Sphere. Our reconstruction of the sphere as a single
convex cell from 280 input planar shapes.

Lack of Semantics. Our method is purely geometric and does not use seman-
tic information. Models from the same object category are not guaranteed to be
reconstructed with the same level of abstraction. However, our method for pro-
ducing simplified volume meshes often leads to reconstructions with one convex
cell for each semantic instance (see e.g . parts of the chairs in the teaser, or the
pillows in Fig. 4).

2 Implementation Details

2.1 Evaluation Metrics

To compute Chamfer distance (CD), Hausdorff distance (HD) and normal con-
sistency (NC) between a ground-truth surface mesh Mg and a reconstructed
surface mesh Mr we sample a set of points Sr and Sg on the facets of the ground-
truth mesh and the reconstructed mesh, respectively, with |Sr| = |Sg| = 100, 000.

Chamfer Distance. We approximate the Chamfer distance between Mg and
Mr as follows:

CD(Mg,Mr) =
1

2|Sg|
∑
x∈Sg

min
y∈Sr

||x− y||2 +
1

2|Sr|
∑
y∈Sr

min
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||y − x||2 . (1)

Hausdorff Distance. We approximate the Hausdorff distance between Mg

and Mr as follows:

HD(Mg,Mr) = max{max
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||y − x||2 }. (2)
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Normal Consistency. Let n(x) be the unit normal of a point x on a mesh, and
⟨·,·⟩ the Euclidean scalar product in R3. We estimated the normal consistency
as follows:

NC(Mg,Mr) =
1
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(3)

2.2 Our Algorithm

Our algorithm for constructing a concise plane arrangement is shown in Alg. 1.
The algorithm is parameter free and only depends on input points and planes.

Algorithm 1 Concise Plane Arrangement Construction
Input: P , I: Planes and Inlier Point Sets
Output: C, F , G, T : Cells, Facets, Adjacency Graph and Binary Tree

1: T ← InitTree(0) ▷ Initialise tree with node 0
2: G ← InitGraph(0) ▷ Initialise graph with node 0
3: C0 ← Bbox(I) ▷ Define cell C0 as bounding box of all points
4: I0 ← I ▷ Define inlier set I0 containing all inlier point sets
5: P0 ← P ▷ Define plane set P0 containing all planes
6: for all TreeNodes t in DFS(T ) do ▷ Traverse T with depth-first search
7: if It is not empty then
8: p ← GetBestPlane(It,Pt) ▷ Alg. 2
9: Cu,Cv,Ft ← SplitCell(Ct, p) ▷ Polyhedron-plane intersection

10: Iu,Iv,Pu,Pv ← SplitInliers(It, Pt, p) ▷ Orientation test
11: UpdateTree(T ,t,u,v) ▷ Add children u,v with parent t
12: UpdateGraph(G,t,u,v) ▷ Split t into u, v & update adjancencies

The key steps of our algorithm are (i) the dynamic ordering scheme of split
planes using our GetBestPlane-function (Alg. 2) and (ii) the hirarchical cluster-
ing of inlier points and planes using a binary tree T . Note that, the GetBestPlane-
function is only evaluated on the subset of planes Pt and corresponding inlier
point sets It associated with the current tree node t. While the GetBestPlane-
function evaluation may slow down the construction algorithm in the beginning,
it drastically reduces the total runtime of the algorithm. We remind the reader
that the time complexity of a plane arrangement construction is O(n3), with n
being the number of input planes [6]. The main bottleneck of most plane ar-
rangement algorithms is the polyhedron-plane intersection which requires exact
geometric constructions. The GetBestPlane-function allows us to equally spread
the number of planes in each subtree, i.e. to minimise n in each subtree, and
thereby reduce the number of necessary intersection computations drastically.
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Algorithm 2 Get Best Split Plane
Input: P , I: Planes and Inlier Point Sets
Output: p: Split Plane

1: for all Planes p in P do
2: Lp,Rp ← ∅ ▷ Initialise point sets that lie fully left and right of p
3: for all PointSets Ii in I \ Ip do
4: if All points Ii lie left of p then ▷ Orientation test
5: Lp ← Lp ∪ Ii
6: else if All points Ii lie right of p then ▷ Orientation test
7: Rp ← Rp ∪ Ii

8: if Lp or Rp is empty then
9: return p ▷ Condition (i) in Section 3.2 (main paper)

10: return argmaxp(|Lp||Rp|) ▷ Condition (ii) in Section 3.2 (main paper)

We use the SageMath library with exact rational numbers for the polyhedron-
plane intersection and floating point precision for the orientation tests. The
orientation tests, e.g . for computing the sets Lp and Rp are fully parallelisable
and can be done efficiently on GPU using PyTorch tensor multiplications.

2.3 Baseline Details

Adaptive Arrangement and Points2Poly. We implement an adaptive plane
arrangement based on Points2Poly (P2P) [3]. P2P is a pipeline for concise build-
ing model reconstruction. P2P uses axis-alligned bounding boxes (AABB) of in-
put planar primitives to construct a plane arrangement. Alg. 3 shows the core
algorithm of P2P and our Adaptive baseline. P2Ps arrangement and our Adap-
tive baseline only differ in their Sort-function (Line 2). P2P sorts input planes
first by their verticality, i.e. vertical planes are inserted first in the arrangement.
The authors identify vertical planes as most important to recover the general
shape of buildings. Because we mainly conduct experiments on general 3D mod-
els, we only use the second sorting criteria of P2P for the Adaptive baseline.
That is, we sort planes by their number of inlier points, with planes with more
inliers first. The rest of the arrangement computation stays unchanged, i.e. is
equal for P2P and the Adaptive baseline. However, we find that the occupancy
classification of P2P often assigns the wrong label to polyhedral cells of the ar-
rangement and the normal-based energy formulation of KSR [1] labels cells with
fewer errors. We thus use the normal-based energy for the Adaptive baseline
and our method. Further, we use our own surface extraction for the Adaptive
baseline because P2P only outputs a set of unconnected polygon facets, instead
of a closed surface mesh1.

1 https://github.com/chenzhaiyu/abspy/issues/18
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Algorithm 3 Adaptive Arrangement Construction
Input: P , B: Planes and AABBs of Inlier Point Sets
Output: C, F , G: Cells, Facets and Adjacency Graph

1: C0 ← Bbox(B) ▷ Define cell C0 as bounding box of all points
2: Sort(P ,B,order) ▷ Sort planes and AABBs according to order
3: G ← InitGraph(0) ▷ Initialise graph with node 0
4: for all AABBs b in B do
5: for all GraphNodes g in G do
6: if IntersectionTest(Cg,b) then ▷ Polyhedron-AABB inter. test
7: if IntersectionTest(Cg,p) then ▷ Polyhedron-plane inter. test
8: Cu,Cv,Ft ← SplitCell(Ct, p) ▷ Polyhedron-plane intersection
9: UpdateGraph(G,t,u,v) ▷ Split t into u, v & update adjancencies

BSP-Net. For the reconstruction experiment in the BSP-Net paper ( [5, Ta-
ble 2]) the authors used several networks each trained on a single category of
ShapeNet ( [5, Section 4.2]). Due to the long training times of BSP-Net we cannot
train multiple single class networks. We therefore use the auto-encoder variant
of the network trained on all 13 categories of ShapeNet available on the authors’
GitHub2. Consequently, our results differ from the ones in [5]. This issue has
been previously discussed on the BSP-Net GitHub3. However, our method com-
pares favourable to BSP-Net, even when comparing to the numbers presented
in Table 2 in [5], e.g . with a Chamfer distance of 0.447 for BSP-Net and 0.385
for Ours.

Further, note that we use the evaluation pipeline of BSP-Net4 which com-
putes the squared Chamfer distance unlike our implementation (cf Eq. 1). Con-
sequently, the Chamfer values in Figure 7 (main text) are not comparable with
the ones in any of our other tables.

3 Additional Experiments

3.1 Comparison with Points2Poly

Experimental Setup. P2P is a pipeline for concise building model reconstruc-
tion. P2P uses axis-alligned bounding boxes (AABB) of input planar primitives
to construct a plane arrangement. P2P also introduces a strategy to classify
the cells of the arrangement with binary occupancies with the combination of
a neural surface reconstruction network [7] and a Markov Random Field. We
compare our method, and the Adaptive baseline, to P2P on their Helsinki city
dataset. The test set comprises 45 buildings which are synthetically scanned
using Blensor to mimic a realistic LiDAR acquisiton with noise, and missing
2 https://github.com/czq142857/BSP-NET-original#datasets-and-pre-trained-

weights
3 https://github.com/czq142857/BSP-NET-original/issues/11
4 https://github.com/czq142857/BSP-NET-original/tree/master/evaluation
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Table 1: Quantitative Comparison with Points2Poly (P2P) on their Helsinki
city dataset [3]. We show the number of vertices |VS | and polygonal facets |FS | of
building models. We also show the one-sided Hausdorff distance (HDr→g) measured
from reconstructed to ground truth building models, the inverse distance (HDg→r),
and the maximum of the two distances (HD). These values were computed using the
evaluation pipeline provided by the authors of P2P. All metrics are computed as the
mean value of the 45 building models. Note, that some of the ground truth models
contain interior structures which cannot be reconstructed due to missing input data.
This corrupts the one-sided Hausdorff distance measured from ground truth models to
reconstructions (HDg→r). In the last column, we show the average reconstruction time
per building.

Complexity Accuracy Performance

|VS | |FS | HDr→g HDg→r HD Time
(×102) (×102) (×102) (s)

P2P [3] 419 103 4.71 7.51 8.64 4.14
Adaptive 148 131 4.27 7.62 8.62 3.32
Ours 57.6 41.2 3.30 7.65 7.79 2.60

data due to occlusion. We use the code, pretrained weights, data and evaluation
pipeline provided by the authors5. We find that some of the provided ground
truth models include interior structures. During the scanning procedure no rays
can reach facets enclosed within the model. Consequently, the interior structures
are not part of the scanned point clouds. Nonetheless, the evaluation pipeline
computes the one-sided Hausdorff distance from the ground truth models to the
reconstruction (HDg→r). We think that the presence of the interior structures
corrupts this distance measure, and consequently also the two-sided distance
HD. The one-sided distance from reconstruction to ground truth mesh (HDr→g)
is not affected by the interior structures. We still provide all three measurements.

Results. We show quantitative and qualitative results of our comparison with
P2P in Tab. 1 and Fig. 2, respectively. Our method produces more concise build-
ing models with around 7× less vertices and less than half the number of facets.
Our models are also more accurate and our pipeline is faster.

3.2 Sensitivity to Defect-Laden Input

Our modelling pipeline offers a good robustness to noise, outliers and low point
density in the input data. Such defects weakly affect the first step, i.e. the
detection of planar shapes. In particular, the fitting tolerance allows us to absorb
a significant amount of noise. The k-nearest neighbor graph of input points
commonly used for planar shape detection is robust to varying point density.
Finally, plane fitting mechanisms typically exploit information on both position
and orientation of input points for selecting plane inliers points. This makes the

5 https://github.com/chenzhaiyu/points2poly
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Input planes P2P Adaptive Ours Ground truth

Fig. 2: Comparison with Points2Poly (P2P) [3] on their Helsinki City
dataset. We compare the adaptive baseline and our method to P2P. Our building
models are more concise and more accurate than the two baselines.
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method robust to outliers. Fig. 3 shows how our reconstruction pipeline benefits
from the robustness of planar shape detection against different input defects.

(a) No defect

-90% -95% -98%

(b) Low density

+0.5% +1.0% +1.5%

(c) Noise

+25% +50% +75%

(d) Outliers

Fig. 3: Sensitivity to Defect-Laden Input. Our method exhibits high robustness
to different input defects. In (a) we show our reconstruction of the Carter model from
200k input points. In (b) we remove 90%, 95% and 98% of input points chosen at
random. Our reconstruction pipeline is highly robust to low density input. In (c) we
add Gaussian noise with a standard deviation of 0.5%, 1.0% and 1.5% of the bounding
box diagonal. Our reconstructions start to degrate around the 1% noise level. In (d)
we add 25%, 50% and 75% of outliers randomly sampled within the bounding box of
the object. Our method produces no remarkable defects for the lower outlier levels. For
75% outliers our method cannot reconstruct a useable surface because the occupancy
for surface extraction cannot be accurately predicted anymore.

3.3 Additional Applications

Shape Editing. Figure 4 shows an example of the use of our algorithm for
simple shape editing. The simplification of an input shape into a set of convexes
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often associates each convex with a meaningful part of the shape, which can then
be transformed or entirely removed.

Input mesh Intersecting convexes Edited convexes

Fig. 4: Shape Editing. Our simplified volume reconstruction produces a set of in-
tersecting convexes that can easily be manipulated and edited. For instance, we can
remove the pillows from the couch or disassemble the shelf into numerous vertical and
horizontal components.

Simplification at Various Levels of Detail. Figure 5 shows how our aggrega-
tion of convex cells can simplify a complex urban scene, from detailed geometry
of facades and rooftops, to a single convex cell enclosing each building block.
The simplification process does not rely upon a deep analysis of the geometry
and semantics of the scene, but simply exploits the information contained in
our graph representation. Constructing the plane arrangement from 17k input
planar shapes detected from 10M points takes around 30 minutes.

We then initialise and update a priority queue for merging convex cells by
computing the left-hand side of Eq. 1 in the main paper for all neighbors in
the adjacency graph G. Remember that Eq. 1 measures the volume deviation
between the sum of the volumes of two cells, and the volume of the convex hull of
their union. We can now iteratively merge the two neighboring convex cells with
the smallest volume deviation in the priority queue until reaching the desired
level of detail, i.e. the desired number of convex cells. Cell aggregation, including
initialisation and update of the priority queue takes around 30 seconds only.

3.4 Additional Results from Tanks And Temples

Fig. 6 provides additional results on three MVS point clouds and a laser scan
from the Tanks and Temples [8] dataset compared to KSR [1]. Starting from
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Input point cloud Plane arrangement Watertight surface mesh Close-up

4951 intersection-free 1000 intersecting 500 intersecting 250 intersecting

Fig. 5: Simplification at Various Levels of Detail. Our scalable pipeline is de-
signed to finely reconstruct objects and scenes, even at large scale. As shown in the
close-up, the reconstructed buildings exhibit many geometric details on facades and
rooftops with even the presence of thin structures such as antennas. At the same time,
our surface reconstruction only uses very few faces. The 4,951 non-intersecting convexes
that finely describe this urban landscape can be simplified by aggregating the convexes
and authorizing their overlap. A simplification with 1,000 convexes typically removes
facade and roof details. At 500 convexes, only complex buildings are still described
by more than one convex cell. Reducing to 250 convexes allows us to represent each
building block or skyscraper by a single convex cell.

the same planar shapes, the meshes produced by KSR include significantly less
details. This may be due to a high regularisation strength used for their surface
extraction, in order to filter out noise from an overly complex partition.

3.5 Additional Results from Thingi10k

We show additional results of our comparison with Robust Low Poly Mesh-
ing (RLPM) [4] on their Thingi10k subset in Fig. 7 and Fig. 8.
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Input KSR Ours

Fig. 6: Comparison with KSR [1] on the Tanks And Temples [8]. We compare
to three MVS (top rows) and one LiDAR (bottom) reconstruction from the KSR42
/ Tanks and Temples dataset. Our method produces more accurate yet lightweight
reconstructions.
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Fig. 7: Additional Results from the Thingi10k Subset of Robust Low Poly
Meshing (RLPM) [4]. We show the input mesh (first row) which we sample and
extract planes to construct our concise plane arrangement (second row). Our extracted
polygon mesh (third row) approximates the input with up to 40× less facets while still
representing almost all details. While our method is tailored to produce polygon meshes
we can triangulate the facets and apply edge collapse with QEM (fourth row). OursTri
even compares favourable to the specialised triangulation based method RLPM (last
row). Note that, OursTri and RLPM have the same number of triangles.
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Fig. 8: Additional Results from the Thingi10k Subset of Robust Low Poly
Meshing (RLPM) [4]. We show the input mesh (first row) which we sample and
extract planes to construct our concise plane arrangement (second row). Our extracted
polygon mesh (third row) approximates the input with large planar facets on planar
parts and smaller facets to represent details. We can also triangulate the facets of
our polygon mesh and apply edge collapse with QEM (fourth row). OursTri compares
favourable to the specialised triangulation based method RLPM (last row). Note that,
OursTri and RLPM have the same number of triangles.
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